Type Here to Get Search Results !

Vinays Info

చతుర్భుజాలు - Quadrilaterals

 చతుర్భుజాలు

నాలుగు రేఖాఖండాలతో ఏర్పడిన సంవృత పటాన్ని 'చతుర్భుజం' అంటారు.

 
                           
చతుర్భుజంలోని భాగాలు:
   ఒక చతుర్భుజంలో నాలుగు భుజాలు, నాలుగు శీర్షాలు, నాలుగు కోణాలు ఉంటాయి.
చతుర్భుజం ABCD లో
1) నాలుగు భుజాలు    
2) నాలుగు శీర్షాలు  A, B, C, D
3) నాలుగు కోణాలు  A, B, C, D

చతుర్భుజ కర్ణాలు:

చతుర్భుజంలో ఎదురెదురు శీర్షాలను కలిపే రేఖాఖండాలను 'కర్ణాలు' అంటారు.
* చతుర్భుజం ABCDలోని కర్ణాలు  .
 

చతుర్భుజంలోని కోణాల మొత్తం
      ఒక చతుర్భుజంలోని నాలుగు కోణాల మొత్తం 360o. అంటే నాలుగు లంబకోణాల మొత్తం లేదా ఒక లంబకోణం నాలుగు రెట్లకి సమానం.
* చతుర్భుజం ABCDలో A + B + C + D = 360o
ఆసన్న కోణాలు: ఉమ్మడి భుజం ఉండే కోణాలను 'ఆసన్న కోణాలు' అంటారు.
ఆసన్న భుజాలు: ఉమ్మడి శీర్షం ఉండే భుజాలను 'ఆసన్న భుజాలు' అంటారు.
* చతుర్భుజం ABCDలో ఆసన్న భుజాల జతలు

 
     
 
* చతుర్భుజం ABCDలో ఆసన్న కోణాల జతలు
i) A, B    ii) B, C    
iii) C, D    iv) D, A
అభిముఖ కోణాలు: ఒక చతుర్భుజంలో ఉమ్మడి భుజం లేని రెండు కోణాలను 'అభిముఖ కోణాలు' లేదా 'ఎదురెదురు కోణాలు' అంటారు.

అభిముఖ భుజాలు: ఒక చతుర్భుజంలో ఉమ్మడి శీర్షం లేని రెండు భుజాలను 'అభిముఖ భుజాలు' లేదా 'ఎదురెదురు భుజాలు' అంటారు.
* చతుర్భుజం ABCD లో అభిముఖ కోణాల జతలు
i) A, C   ii) B, D అభిముఖ భుజాల జతలు

  అభిముఖ భుజాల జతలు.
 

చతుర్భుజ తలాలు
ఒక చతుర్భుజం తలాన్ని అంతర, బాహ్య, హద్దు తలాలుగా విభజిస్తుంది.
i) అంతర తలంలోని బిందువులు E, F, J.
ii) బాహ్య తలంలోని బిందువులు G, H, I, K.
iii) హద్దు మీద బిందువులు A, B, C, D, L, M.
 

పుటాకార చతుర్భుజం
 
      ఒక చతుర్భుజంలో అంతరంగా ఉన్న బిందువులను కలిపే రేఖాఖండాలన్నీ చతుర్భుజానికి అంతరంగా లేకపోతే దాన్ని 'పుటాకార చతుర్భుజం' అంటారు.
* పటం నుంచి   రేఖాఖండం చతుర్భుజం PQRS బాహ్య తలంలో కూడా ఉంది.
* ఒక పుటాకార చతుర్భుజంలో ఒక కోణం 180oకంటే ఎక్కువ.

కుంభాకార చతుర్భుజం
 
      ఒక చతుర్భుజంలోని ఏవైనా రెండు బిందువులను కలిపే రేఖాఖండాలన్నీ పూర్తిగా చతుర్భుజ అంతరంలోనే ఉంటే ఆ చతుర్భుజాన్ని కుంభాకార చతుర్భుజం అంటారు
* ABCD ఒక కుంభాకార చతుర్భుజం.
* ఒక కుంభాకార చతుర్భుజంలోని కోణాలన్నీ 180oకంటే తక్కువగా ఉంటాయి.

చతుర్భుజాల రకాలు
* సమాంతర చతుర్భుజం
* సమ చతుర్భుజం
* దీర్ఘచతురస్రం
* చతురస్రం
* గాలి పటం
* ట్రెపీజియం
* చక్రీయ చతుర్భుజం

i) సమాంతర చతుర్భుజం
 
* ఏ రెండు ఎదుటి భుజాలైనా సమానం.
* ఏ రెండు ఎదుటి కోణాలైనా సమానం.
* ఏ రెండు ఆసన్న కోణాల మొత్తమైనా 180o
* కర్ణాలు ఒకదానికొకటి సమద్విఖండన చేసుకుంటాయి.
* ప్రతి కర్ణం సమాంతర చతుర్భుజాన్ని రెండు సర్వసమాన త్రిభుజాలుగా విభజిస్తుంది.
* సమాంతర చతుర్భుజం ABCDలో
AB CD, AD  BC
A = C, B = D
A + B = B + C = C + D = D + A = 180o

ii) సమ చతుర్భుజం లేదా రాంబస్:
* అన్ని భుజాలు సమానం.
* ఎదురెదురు కోణాలు సమానం.
* కర్ణాలు పరస్పరం లంబసమద్విఖండన చేసుకుంటాయి.

 
* ప్రతి కర్ణం రాంబస్‌ను రెండు సర్వసమాన త్రిభుజాలుగా విభజిస్తుంది.
* ఏ రెండు ఆసన్న కోణాల మొత్తమైనా 180o
రాంబస్ ABCD లో
* AB = BC = CD = DA
* AC ≠ BD
AOD = AOB = DOC = BOC = 90o
A + B = B + C = C + D = D + A = 180o

iii) దీర్ఘచతురస్రం
  
* ఎదురెదురు భుజాలు సమానం, సమాంతరం.
* అన్ని కోణాలు 90°.
* కర్ణాల కొలతలు సమానం.
* కర్ణాలు పరస్పరం సమద్విఖండన చేసుకుంటాయి.
* ప్రతి కర్ణం దీర్ఘచతురస్రాన్ని రెండు సర్వసమాన త్రిభుజాలుగా విభజిస్తుంది.
* ఏ రెండు ఆసన్న కోణాల మొత్తమైనా 180o

* ఎదురెదురు కోణాలు సంపూరకాలు.
* దీర్ఘచతురస్రం ABCDలో
* AB  || CD, AB = CD
* BC || AD, BC = AD
A = B = C = D = 90°, AC = BD

iv) చతురస్రం
 
* అన్ని భుజాలు సమానం. అన్ని కోణాలు సమానం (90o).
* కర్ణాలు సమానం. కర్ణాలు లంబ సమద్విఖండన చేసుకుంటాయి.
* ప్రతి కర్ణం చతురస్రాన్ని రెండు సర్వసమాన సమద్విబాహు త్రిభుజాలుగా విభజిస్తుంది.
* చతురస్రం ABCDలో
* AB = BC = CD = DA
A = B = C = D = 90o
* AC = BD
AOD = DOC = COB = BOA = 90o

v) గాలిపటం
 
    రెండు జతల ఆసన్న భుజాలు సమానం.
* గాలిపటం ABCDలో
AB = BC, AD = DC
* ప్రతి సమ చతుర్భుజం ఒక సమాంతర చతుర్భుజం అవుతుంది.
* ప్రతి దీర్ఘచతురస్రం ఒక సమాంతర చతుర్భుజం అవుతుంది.
* ప్రతి చతురస్రం ఒక దీర్ఘచతురస్రం అవుతుంది.
* ఒక సమ చతుర్భుజాన్ని దాని కర్ణాలు నాలుగు సర్వసమాన త్రిభుజాలుగా విభజిస్తాయి.
* సమద్విబాహు సమలంబ చతుర్భుజంలో కర్ణాలు సమానం.
 

vi) ట్రెపీజియం
 
* ఒక జత ఎదుటి భుజాలు సమానం.
* సమాంతరంగా లేని భుజాలు సమాంతర భుజాలతో ఒకేవైపు చేసే కోణాలు సంపూరకాలు.
A + D = 180o
B + C = 180o
* ఒక జత ఎదుటి భుజాలు సమాంతరంగా ఉండి మరో జత ఎదుటి భుజాలు సమానంగా ఉంటే అది సమద్విబాహు ట్రెపీజియం అవుతుంది.

vii) చక్రీయ చతుర్భుజం: వృత్తంలోని అంతర్లిఖిత చతుర్భుజాన్ని చక్రీయ చతుర్భుజం అంటారు.
 
* చక్రీయ చతుర్భుజంలో ఎదురెదురు కోణాలు సంపూరకాలు.
(A + C = B + D = 180o)

వివిధ చతుర్భుజాలను నిర్మించడానికి కావాల్సిన స్వతంత్ర కొలతల సంఖ్య:

 

* దీర్ఘచతురస్రం భుజాల మధ్య బిందువులను వరుసగా కలుపగా ఏర్పడే పటం రాంబస్.
* చతురస్ర భుజాల మధ్య బిందువులను వరుసగా కలుపగా ఏర్పడే పటం చతురస్రం.
* రాంబస్ భుజాల మధ్య బిందువులను వరుసగా కలుపగా ఏర్పడే పటం దీర్ఘచతురస్రం.
* సమాంతర చతుర్భుజపు మధ్య బిందువులను వరుసగా కలపగా ఏర్పడే పటం సమాంతర చతుర్భుజం.

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.

Top Post Ad

Below Post Ad

Ads Section